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Last Lecture

• Membership Inference Attacks

• Model Inversion Attacks

• Model Stealing Attacks

• Privacy Protection Methods
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This Lecture

• Accountability

• Detecting AI-generated Content

• Watermarking Techniques

• Evading Watermarking-based Detection 
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Accountability of AI
If an AI system causes harm (e.g., a self-driving car accident), is it the 
company deploying the system, the developer or the user liable?

• Companies: Companies deploying AI systems must ensure they follow legal and 
ethical guidelines, and mitigate risks such as discrimination, misinformation, or 
unintended consequences.

• Developers: Responsible for ensuring that AI systems are fair, safe, transparent, and 
do not perpetuate harm or bias.

• Users: Individuals or entities that use AI systems responsibly. They should 
understand the limitations of AI, follow ethical guidelines in its application, and 
avoid misuse.
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Key Questions about AI Accountability

• What is accountability? 
• An obligation or willingness to accept responsibility or to 

account for one's action.
• How to achieve accountability?

• AI systems need to be transparent (people should understand 
how decisions are made) and explainable (the decision-making 
process should be clear enough).

• Regulatory frameworks should be provided to ensure 
accountability.
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Challenges in AI Accountability
• Complexity of AI Systems: Advanced AI systems (e.g., deep learning) 

often function as black boxes, making it difficult to trace specific 
decision-making steps. 

• Shared Responsibility: AI systems often rely on multiple stakeholders 
(developers, users, etc.), so it can be hard to pinpoint exactly who is 
responsible when something goes wrong.

• Autonomous Decision-Making: Making decisions without human 
intervention challenges traditional notions of accountability, as the AI 
may make choices its creators did not explicitly intend.
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This Lecture

• Accountability

• Detecting AI-generated Content
• An important aspect of accountability of AI

• Watermarking Techniques

• Evading Watermarking-based Detection 
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AI-generated Content VS Deepfake

• AI-generated content refers to any content created by AI algorithms, 
e.g. text generation, image and art creation, video and animation, 
music composition, and voice synthesis. (broad term)

• Deepfakes specifically refer to synthetic media where a person in an 
existing image or video is replaced with someone else's likeness. It 
uses deep learning techniques to make these alterations appear as 
realistic as possible.
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Generative AI for Image
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https://www.whichfaceisreal.com/  (StyleGAN)

https://www.whichfaceisreal.com/


Images from StyleGAN
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Water-splotches

Background problems

Eyeglasses

Other asymmetries, hair, teeth, Fluorescent bleed



Anything in Any Scene Photorealistic Video Object Insertion
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Detecting AI-generated Content

• Passive Detection
• Key idea: leverage artifacts in AI-generated content
• High false positives/negatives
• Abandoned by OpenAI

• Watermark-based Detection
• Deployed by Google, Microsoft, OpenAI, Stability AI, etc.
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Passive Detection

• Binary classification: cannot extend to unseen generative models
• But data augmentation can significantly boost the generalization for the 

detector.

• Universal fingerprint across different generative models
• Consistently anomalous behavior of fake images in the frequency domain.
• Upsampling operation results in the frequency abnormality of fake images.
• Image generated by a diffusion model are more likely to be accurately 

reconstructed by a pre-trained diffusion model. 
• So, previous researchers adopt the reconstruction error of an image as the 

fingerprint to identify diffusion-generated fake images.
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PatchCraft: Exploring Texture Patch for Efficient AI-
generated Image Detection (1)
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• Inter-pixel correlation is determined by its camera device (CMOS) and ISP 
(Image Signal Processing).

• The inter-pixel correlations of real images between rich and poor texture 
regions are very close.



PatchCraft: Exploring Texture Patch for Efficient AI-
generated Image Detection (2)
• Texture diversity measurement

• High-pass filters are conducive to suppressing semantic 
information and magnifying the interpixel correlation
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PatchCraft: AI-generated Image Detection
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PatchCraft (Ours) https://fdmas.github.io/AIGCDetect/data/



This Lecture

• Accountability

• Detecting AI-generated Content

• Watermarking Techniques 

• Evading Watermarking-based Detection 
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Watermarking Techniques

• Creators embed identifiable markers or metadata into AI models, 
datasets, or outputs to trace their origin or prove ownership.

• Watermarking techniques in AI systems are a potential solution for 
ensuring accountability, particularly in the context of AI-generated 
content, intellectual property protection, and responsibility.
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AI Model Watermarking

• White-box Watermarking
• This technique involves embedding the watermark directly into the 

model’s parameters or structure. 
• It requires access to the internal architecture of the model and can be 

used to verify ownership or identify unauthorized modifications.

• Black-box Watermarking
• Black-box watermarking embeds a secret, recognizable pattern in the 

model’s outputs rather than its internal structure. 
• It doesn’t require access to the internal workings of the AI model and can 

be verified through observing the model’s responses to specific inputs.
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Dataset Watermarking

• Perturbation Watermarking
• This involves making small, controlled modifications (perturbations) to 

the data, which do not affect its usability but serve as a watermark to 
prove dataset ownership or trace responsibility.

• Data Label Watermarking
• A form of watermarking where specific, unique patterns are embedded in 

the labels of the dataset. 
• This helps identify if a model has been trained on a specific dataset, even 

when used by unauthorized entities.
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Watermarking in Large Language Models

• Token-based Watermarking
• Inserting specific patterns or sequences of words or tokens into 

generated text in a way that is hard for a human to detect but easily 
identified by automated tools.

• Sentence Structure Watermarking
• Subtly altering sentence structures or punctuation in the generated text to 

leave an identifiable watermark while maintaining the overall meaning.
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Watermarking Quality

• Quality. The watermark should be imperceptible to humans, meaning the 

watermarked version appears identical to the original in raw data modality.

• Generalization. The watermark can be applied to any samples, and the 

watermarking method is compatible with different models.

• Robustness. The watermark cannot be compromised by existing attack 

methods.
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Digital Watermarking in AI-generated Image
• Invisible Watermarking: embedding markers in a way that is 

imperceptible to humans but detectable using specific algorithms. 
• Visible Watermarking: Placing a visible marker, like a logo or text, 

onto AI-generated images, videos, or other multimedia content.

11/13/2024 CIS6930 Trustworthy AI Systems 23

https://link.springer.com/article/10.1007/s11042-013-1515-8



None-learning-based Watermarking Methods 

• dwtDct: DWT + DCT transform, embed watermark bit into max non-
trivial coefficient of block DCT coefficients

• dwtDctSvd: DWT + DCT transform, SVD decomposition of each block, 
embed watermark bit into singular value decomposition

• Discrete wavelet transform (DWT)

• Discrete cosine transform (DCT)

• https://github.com/ShieldMnt/invisible-watermark
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https://en.wikipedia.org/wiki/Discrete_wavelet_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://github.com/ShieldMnt/invisible-watermark


Watermarking and Adversarial Perturbation
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Can DNNs extract meaningful information from imperceptible perturbations?



Watermarking and Adversarial Perturbation
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Digital watermarking can be used to identify image ownership



Learning-based Watermarking Methods 
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Standard training



Adversarial Training for Watermarking
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A General Framework for Training Watermarking Model
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• AutoEncoder. Embed the watermark into the image, producing an encoded version of it.

• Adversary. Improve the quality of the watermarked image and minimize the domain gap 

between the original and the watermarked image.

• Detector. Receive the encoded images or audio and output the extracted message.

• Distortion Layer. Simulate potential attack scenarios.



HiDDeN: Hiding Data With Deep Networks
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• An autoencoder embeds a message into a cover image and outputs an encoded image.

• A decoder receives the encoded image and extracts the embedded message.

• The adversary predicts whether a given image contains an encoded message.

• The noisy layer applies various image transformations to improve robustness against 

various image distortion scenarios.

https://arxiv.org/pdf/1807.09937



HiDDeN: Distortion Method

11/13/2024 CIS6930 Trustworthy AI Systems 31

• JPEG-Mask zeros a fixed set of high-frequency 

coefficients

• JPEG-Drop zeros channels with higher drop 

probabilities for high-frequency coefficients

Discrete Cosine Transform (DCT) 



HiDDeN: Data Quality Results
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• Encoded images from the HiDDeN model are visually indistinguishable from the cover image

• The model trained against an adversarial discriminator produces images with no visible artifacts

The image distortion between the cover and stego image using peak signal-to-noise ratio (PSNR)



Watermark-based Detection
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How to Set Detection Threshold 𝜏?

11/13/2024 CIS6930 Trustworthy AI Systems 34

Goal: achieve a desired False Positive Rate (FPR)

𝑛 ∙ 𝐵𝐴 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 0.5)

FPRFPR < 10−4
𝜏 > 0.83

30-bit watermark

1010101

1010111

BADecoder

Non-AI-generated
Uniformly at random

n: watermark length

https://arxiv.org/abs/2305.03807
https://github.com/zhengyuan-jiang/WEvade

https://arxiv.org/abs/2305.03807
https://github.com/zhengyuan-jiang/WEvade


Problem of Single-tail

• Single-tail detector can be easily evaded by simply extending 
standard adversarial examples to watermarking.

• Adds perturbation to a watermarked image such that the 
decoded watermark has a very small bitwise accuracy ➔ 0. As a 
results, this will evade the watermarking-based detection.
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Important Observation

• The watermarks decoded from original 
images have bitwise accuracy close to 0.5, 
while those decoded from watermarked 
images have large bitwise accuracy, e.g., 
close to 1. 

• If the bitwise accuracy of the watermark 
decoded from an image is significantly 
smaller than 0.5, it is likely to be an 
adversarial perturbed image. 
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AI-generated: If BA > 𝜏 or BA < 1 - 𝜏

Non-AI-generated: Otherwise 

To avoid evading detection, 
using double-tail detector.



This Lecture

• Accountability

• Detecting AI-generated Content

• Watermarking Techniques 

• Evading Watermarking-based Detection 

11/13/2024 CIS6930 Trustworthy AI Systems 37



Question: double-tail detector safe to use?
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• Intuition: non-watermarked images have bitwise accuracy ≈ 𝟎. 𝟓
• Attack the detector: add minimal perturbation to make bitwise 

accuracy ≈ 0.5, making the perturbed watermarked image 
indistinguishable with non-watermarked ones

Ground-truth watermark: Unknown to attacker

Constraints are non-linear, hard to solve!
Decoder



Solve the Optimization Problem
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Target watermark is a 
random watermark

Iteratively find the perturbation 𝛿 that satisfies the constraints (if possible) for a given 𝑟. 

Binary search over 𝑟  to find the smallest perturbation 𝛿 that satisfies the constraints 

W_t bitwise accuracy close to 0.5 compared to any ground-truth watermark 



Empirical Evaluation Results

11/13/2024 CIS6930 Trustworthy AI Systems 40

30-bit watermark, standard training

Double-tail detector

• Evasion rate: probability that a 
perturbed watermarked image is 
detected as non-AI-generated

• Detection Threshold:
• Fraction of bit match 

accuracy > 𝜏



Black-box Attack to Evade Watermarking-based 
Detection
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Initial perturbed 
image

Watermarked image

AI-generated

Non-AI-generated

Repeat until query budget

• Surrogate Model
• Query-based
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